\begin{equation} \DeclareMathOperator\Gr{Gr} \DeclareMathOperator\LGr{LGr} \DeclareMathOperator\OGr{OGr} \DeclareMathOperator\SGr{SGr} \DeclareMathOperator\Kzero{K_0} \DeclareMathOperator\index{i} \DeclareMathOperator\rk{rk} \end{equation}

Grassmannian.info

A periodic table of (generalised) Grassmannians.

Quadric $\mathrm{Q}^{7}$

Betti numbers
\begin{align*} \mathrm{b}_{ 1 } &= 1 \\ \mathrm{b}_{ 2 } &= 1 \\ \mathrm{b}_{ 3 } &= 1 \\ \mathrm{b}_{ 4 } &= 1 \\ \mathrm{b}_{ 5 } &= 1 \\ \mathrm{b}_{ 6 } &= 1 \\ \mathrm{b}_{ 7 } &= 1 \\ \mathrm{b}_{ 8 } &= 1 \end{align*}
Basic information
dimension
7
index
7
Euler characteristic
8
Betti numbers
$\mathrm{b}_{ 1 } = 1$, $\mathrm{b}_{ 2 } = 1$, $\mathrm{b}_{ 3 } = 1$, $\mathrm{b}_{ 4 } = 1$, $\mathrm{b}_{ 5 } = 1$, $\mathrm{b}_{ 6 } = 1$, $\mathrm{b}_{ 7 } = 1$, $\mathrm{b}_{ 8 } = 1$
$\mathrm{Aut}^0(\mathrm{Q}^{7})$
$\mathrm{SO}_{ 9 }$
$\pi_0\mathrm{Aut}(\mathrm{Q}^{7})$
$1$
$\dim\mathrm{Aut}^0(\mathrm{Q}^{7})$
36
Projective geometry
minimal embedding

$\mathrm{Q}^{7}\hookrightarrow\mathbb{P}^{ 8 }$

degree
2
Hilbert series
1, 9, 44, 156, 450, 1122, 2508, 5148, 9867, 17875, 30888, 51272, 82212, 127908, 193800, 286824, 415701, 591261, 826804, 1138500, ...
Exceptional collections
  • Kapranov constructed a full exceptional sequence in 1988, see MR0939472.